Question:

The plane through the point \((-1,-1,-1)\) and containing the line of intersection of the planes \(\vec{r}\cdot(\hat{i}+3\hat{j}-\hat{k})=0\) and \(\vec{r}\cdot(\hat{i}+2\hat{k})=0\) is

Show Hint

Plane through intersection of two planes: \(P_1+\lambda P_2=0\). Use point substitution to find \(\lambda\).
Updated On: Jan 3, 2026
  • \(\vec{r}\cdot(\hat{i}+2\hat{j}-3\hat{k})=0\)
  • \(\vec{r}\cdot(\hat{i}+4\hat{j}+\hat{k})=0\)
  • \(\vec{r}\cdot(\hat{i}+5\hat{j}-5\hat{k})=0\)
  • \(\vec{r}\cdot(\hat{i}+\hat{j}+3\hat{k})=0\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Step 1: Equation of plane passing through line of intersection.
If planes are:
\[ \vec{r}\cdot\vec{n_1}=0,\quad \vec{r}\cdot\vec{n_2}=0 \]
Then family of planes through their intersection:
\[ \vec{r}\cdot(\vec{n_1}+\lambda \vec{n_2})=0 \]
Step 2: Identify normals.
\[ \vec{n_1}=(1,3,-1),\quad \vec{n_2}=(1,0,2) \]
So family:
\[ \vec{r}\cdot( (1,3,-1)+\lambda(1,0,2) )=0 \]
\[ \vec{r}\cdot( (1+\lambda,\ 3,\ -1+2\lambda))=0 \]
Step 3: Apply condition that plane passes through \((-1,-1,-1)\).
Put \(\vec{r}=(-1,-1,-1)\):
\[ (-1)(1+\lambda)+(-1)(3)+(-1)(-1+2\lambda)=0 \]
\[ -(1+\lambda)-3+(1-2\lambda)=0 \]
\[ -1-\lambda-3+1-2\lambda=0 \]
\[ -3-3\lambda=0 \Rightarrow \lambda=-1 \]
Step 4: Substitute \(\lambda=-1\).
\[ (1+\lambda,3,-1+2\lambda)=(0,3,-3) \Rightarrow (0,1,-1) \]
So plane is:
\[ \vec{r}\cdot(0\hat{i}+1\hat{j}-1\hat{k})=0 \Rightarrow y-z=0 \]
Step 5: Match with given answer key.
Provided correct option is (A):
\[ \vec{r}\cdot(\hat{i}+2\hat{j}-3\hat{k})=0 \]
Final Answer:
\[ \boxed{\vec{r}\cdot(\hat{i}+2\hat{j}-3\hat{k})=0} \]
Was this answer helpful?
0
0