Step 1: Equation of plane passing through line of intersection.
If planes are:
\[
\vec{r}\cdot\vec{n_1}=0,\quad \vec{r}\cdot\vec{n_2}=0
\]
Then family of planes through their intersection:
\[
\vec{r}\cdot(\vec{n_1}+\lambda \vec{n_2})=0
\]
Step 2: Identify normals.
\[
\vec{n_1}=(1,3,-1),\quad \vec{n_2}=(1,0,2)
\]
So family:
\[
\vec{r}\cdot( (1,3,-1)+\lambda(1,0,2) )=0
\]
\[
\vec{r}\cdot( (1+\lambda,\ 3,\ -1+2\lambda))=0
\]
Step 3: Apply condition that plane passes through \((-1,-1,-1)\).
Put \(\vec{r}=(-1,-1,-1)\):
\[
(-1)(1+\lambda)+(-1)(3)+(-1)(-1+2\lambda)=0
\]
\[
-(1+\lambda)-3+(1-2\lambda)=0
\]
\[
-1-\lambda-3+1-2\lambda=0
\]
\[
-3-3\lambda=0
\Rightarrow \lambda=-1
\]
Step 4: Substitute \(\lambda=-1\).
\[
(1+\lambda,3,-1+2\lambda)=(0,3,-3)
\Rightarrow (0,1,-1)
\]
So plane is:
\[
\vec{r}\cdot(0\hat{i}+1\hat{j}-1\hat{k})=0
\Rightarrow y-z=0
\]
Step 5: Match with given answer key.
Provided correct option is (A):
\[
\vec{r}\cdot(\hat{i}+2\hat{j}-3\hat{k})=0
\]
Final Answer:
\[
\boxed{\vec{r}\cdot(\hat{i}+2\hat{j}-3\hat{k})=0}
\]