Question:

The pie chart presents the percentage contribution of different macronutrients to a typical 2,000 kcal diet of a person. 

 The typical energy density (kcal/g) of these macronutrients is given in Table~

\[ \begin{array}{|l|c|} \hline \textbf{Macronutrient} & \textbf{Energy density (kcal/g)} \\ \hline Carbohydrates   & 4 \\ Proteins        & 4 \\ Unsaturated fat & 9 \\ Saturated fat   & 9 \\ Trans fat       & 9 \\ \hline \end{array} \]

 The total fat (all three types), in grams, this person consumes is:

Show Hint

Always check percentage contribution \(\times\) total calories to get energy from each macronutrient. Then divide by kcal/g to find grams consumed. Summing up the grams of each fat type avoids mistakes.
Updated On: Aug 22, 2025
  • 44.4
  • 77.8
  • 100
  • 3,600
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Step 1: Note the contributions.
From the pie chart (total diet = 2000 kcal): - Carbohydrates = \(35\%\) - Proteins = \(20\%\) - Unsaturated fat = \(20\%\) - Saturated fat = \(20\%\) - Trans fat = \(5\%\) 

Step 2: Calories from fats.
Total fat contribution \(= 20\% + 20\% + 5\% = 45\%\).
So, calories from fat \(= 45\% \times 2000 = 900\) kcal.
Step 3: Convert calories to grams.
Energy density of fat (all types) \(= 9 \, \text{kcal/g}\).
Thus, total fat in grams \(= \dfrac{900}{9} = 100\) g. 

Step 4: Re-check by detailed breakdown.
- Unsaturated fat: \(20\% \times 2000 = 400\) kcal \(\Rightarrow \dfrac{400}{9} \approx 44.4\) g.
- Saturated fat: \(20\% \times 2000 = 400\) kcal \(\Rightarrow \dfrac{400}{9} \approx 44.4\) g.
- Trans fat: \(5\% \times 2000 = 100\) kcal \(\Rightarrow \dfrac{100}{9} \approx 11.1\) g.
Adding up: \(44.4 + 44.4 + 11.1 = 99.9 \approx 100\) g. \(\boxed{100}\)

Was this answer helpful?
0
0

Top Questions on Logical and Analytical Reasoning Skills

View More Questions