Step 1: Check periodicity of each sinusoid.
A discrete sinusoid \(\sin(\omega n + \phi)\) is periodic if \(\omega / 2\pi\) is rational.
- First term: \(\omega_1 = 15\pi/8\).
\[
\frac{\omega_1}{2\pi} = \frac{15/8}{2} = \frac{15}{16}
\]
Thus period:
\[
N_1 = \frac{2\pi}{\omega_1} = \frac{2\pi}{15\pi/8} = \frac{16}{15}
\]
The fundamental period in integer \(n\) is denominator of fraction \(15/16\), i.e., 16.
- Second term: \(\omega_2 = \pi/3\).
\[
\frac{\omega_2}{2\pi} = \frac{1}{6}
\]
Thus period:
\[
N_2 = 6
\]
Step 2: Overall period.
Overall period = LCM of individual periods:
\[
N = \text{LCM}(16, 6) = 48
\]
Final Answer:
\[
\boxed{48}
\]
In the Wheatstone bridge shown below, the sensitivity of the bridge in terms of change in balancing voltage \( E \) for unit change in the resistance \( R \), in V/Ω, is __________ (round off to two decimal places).
The relationship between two variables \( x \) and \( y \) is given by \( x + py + q = 0 \) and is shown in the figure. Find the values of \( p \) and \( q \). Note: The figure shown is representative.