The operation $(x)$ is defined by:
(i) $(1)=2$
(ii) $(x+y)=(x)\cdot(y)$
for all positive integers $x$ and $y$.
If $\sum_{x=1^{n} (x)=1022$, then $n=$ ?}
Show Hint
Whenever $(x+y)=(x)(y)$ is given, the function usually grows exponentially. Check for powers of 2 or 3 by computing small values and then generalize.
Step 1: Define the function.
Let $f(x)=(x)$.
Given:
\[
f(1)=2, \quad f(x+y)=f(x)\cdot f(y)
\]
Step 2: Compute initial terms.
- For $x=2$: $f(2)=f(1+1)=f(1)\cdot f(1)=2\cdot2=4$.
- For $x=3$: $f(3)=f(2+1)=f(2)\cdot f(1)=4\cdot2=8$.
- For $x=4$: $f(4)=f(3+1)=f(3)\cdot f(1)=8\cdot2=16$.
So the pattern emerges:
\[
f(n)=2^n
\]
Step 3: Express the summation.
\[
\sum_{x=1}^{n} f(x)=2^1+2^2+2^3+\ldots+2^n
\]
This is a geometric progression with first term $a=2$, ratio $r=2$, $n$ terms.
Step 4: Sum of G.P.
\[
S_n=\frac{a(r^n-1)}{r-1}=\frac{2(2^n-1)}{1}=2^{n+1}-2
\]
We are given $S_n=1022$.
\[
2^{n+1}-2=1022 \quad \Rightarrow \quad 2^{n+1}=1024
\]
\[
2^{n+1}=2^{10} \quad \Rightarrow \quad n+1=10 \quad \Rightarrow \quad n=9
\]
Final Answer:
\[
\boxed{9}
\]