Step 1: Write the polynomial.
\[
P(s) = s^3 + 2s^2 + 5s + 80
\]
Step 2: Use Routh-Hurwitz criterion.
Construct the Routh array:
\[
\begin{array}{c|cc}
s^3 & 1 & 5
s^2 & 2 & 80
s^1 & \frac{(2 . 5 - 1 . 80)}{2} = \frac{10 - 80}{2} = -35 & 0
s^0 & 80 &
\end{array}
\]
Step 3: Check sign changes in the first column.
First column: $[1, 2, -35, 80]$.
Number of sign changes = 2.
Step 4: Interpret.
Thus, there are 2 roots in the right-half plane.