Step 1: Recall definition of weight-average molecular weight.
The formula is:
\[
M_w = \frac{\sum N_i M_i^2}{\sum N_i M_i}
\]
where $N_i$ = number of molecules of type $i$, $M_i$ = molecular mass of that type.
Step 2: Substitute given data.
For $M_1 = 7500$, $N_1 = 100$:
\[
N_1 M_1^2 = 100 \times (7500)^2 = 100 \times 56.25 \times 10^6 = 5.625 \times 10^9
\]
\[
N_1 M_1 = 100 \times 7500 = 750000
\]
For $M_2 = 5000$, $N_2 = 50$:
\[
N_2 M_2^2 = 50 \times (5000)^2 = 50 \times 25 \times 10^6 = 1.25 \times 10^9
\]
\[
N_2 M_2 = 50 \times 5000 = 250000
\]
Step 3: Compute numerator and denominator.
\[
\sum N_i M_i^2 = 5.625 \times 10^9 + 1.25 \times 10^9 = 6.875 \times 10^9
\]
\[
\sum N_i M_i = 750000 + 250000 = 1,000,000
\]
Step 4: Calculate $M_w$.
\[
M_w = \frac{6.875 \times 10^9}{1.0 \times 10^6} = 6875 \ \text{g/mol}
\]
But wait — let's double check:
- Numerator = $6.875 \times 10^9$
- Denominator = $1.0 \times 10^6$
Yes, result = 6875.
Step 5: Round to integer.
$M_w = 6875$ g/mol.
Final Answer:
\[
\boxed{6875 \ \text{g/mol}}
\]