Step 1: Use Kohlrausch’s law of independent ionic migration.
\[
\Lambda_m(KCl) = \lambda_{K^+} + \lambda_{Cl^-}
\]
\[
\Lambda_m(NaCl) = \lambda_{Na^+} + \lambda_{Cl^-}
\]
\[
\Lambda_m(KNO_3) = \lambda_{K^+} + \lambda_{NO_3^-}
\]
Step 2: Write required expression for NaNO\(_3\).
\[
\Lambda_m(NaNO_3) = \lambda_{Na^+} + \lambda_{NO_3^-}
\]
Step 3: Eliminate unknown ionic conductivities.
Add NaCl and KNO\(_3\), then subtract KCl:
\[
\Lambda_m(NaNO_3) = \Lambda_m(NaCl) + \Lambda_m(KNO_3) - \Lambda_m(KCl)
\]
Step 4: Substitute values.
\[
\Lambda_m(NaNO_3) = 128 + 111 - 152
= 239 - 152
= 87
\]
Final Answer:
\[
\boxed{87 \, S\,cm^2\,mol^{-1}}
\]