Step 1: Finding the critical points.
Differentiate \( y \) with respect to \( x \):
\[
\frac{dy}{dx} = 4x^3 - 4x
\]
Setting \( \frac{dy}{dx} = 0 \) for critical points:
\[
4x(x^2 - 1) = 0
\]
\[
x(x - 1)(x + 1) = 0
\]
\[
x = 0, 1, -1
\]
Step 2: Evaluating within the given interval.
The interval is \( \left[\frac{1}{2}, 2\right] \), so we consider \( x = 1 \), \( x = \frac{1}{2} \), and \( x = 2 \).
Computing function values:
\[
y(1) = 1^4 - 2(1^2) + 1 = 0
\]
\[
y\left(\frac{1}{2}\right) = \left(\frac{1}{2}\right)^4 - 2\left(\frac{1}{2}\right)^2 + 1 = \frac{1}{16} - \frac{2}{4} + 1 = \frac{13}{16}
\]
\[
y(2) = 2^4 - 2(2^2) + 1 = 16 - 8 + 1 = 9
\]
Step 3: Conclusion.
The minimum value in \( \left[\frac{1}{2}, 2\right] \) is \( 0 \) at \( x = 1 \).
Thus, the correct answer is (A) \( 0 \).