For linear contrast stretching, we use the following formula:
\[
\text{Output DN} = \frac{(X - \text{min})}{(\text{max} - \text{min})} \times (L_{\text{max}} - L_{\text{min}}) + L_{\text{min}}
\]
Where:
- \( X = 35 \) (the input DN value),
- \( \text{min} = 30 \) (the minimum DN value),
- \( \text{max} = 55 \) (the maximum DN value),
- \( L_{\text{max}} = 255 \) (the maximum possible value for 8-bit data),
- \( L_{\text{min}} = 0 \) (the minimum possible value for 8-bit data).
Substituting the values into the formula:
\[
\text{Output DN} = \frac{(35 - 30)}{(55 - 30)} \times (255 - 0) = \frac{5}{25} \times 255 = 0.2 \times 255 = 51
\]
Final Answer:
\[
\boxed{51}
\]