To find the maximum value of the function \(f(x)=x+\sqrt{1-x}\) on the interval \([0,1]\), we follow these steps:
Compute the derivative \(f'(x)\) to find critical points: \(f'(x)=1-\frac{1}{2\sqrt{1-x}}\).
Set the derivative to zero to find critical points: \(1-\frac{1}{2\sqrt{1-x}}=0\) leads to \(\frac{1}{2\sqrt{1-x}}=1\). Solving gives \(\sqrt{1-x}=\frac{1}{2}\). Squaring both sides, \(1-x=\frac{1}{4}\). Solve for \(x\) to get \(x=\frac{3}{4}\).
Evaluate \(f(x)\) at critical points and endpoints of the interval: \(f(0)=0+\sqrt{1}=1\), \(f(1)=1+\sqrt{0}=1\), \(f\left(\frac{3}{4}\right)=\frac{3}{4}+\sqrt{\frac{1}{4}}=\frac{3}{4}+\frac{1}{2}=\frac{5}{4}\).
Compare the values: \(f(0)=1\), \(f(1)=1\), \(f\left(\frac{3}{4}\right)=\frac{5}{4}\). The maximum value of \(f(x)\) on \([0,1]\) is \(\frac{5}{4}\).