Question:

The maximum value of the function \(f(x)=x+\sqrt{1-x}\) on the interval [0,1] is, 

Updated On: May 11, 2025
  • \(\frac{1}{4}\)
  • \(\frac{5}{4}\)
  • \(\frac{3}{4}\)
  • 1
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

To find the maximum value of the function \(f(x)=x+\sqrt{1-x}\) on the interval \([0,1]\), we follow these steps:
  1. Compute the derivative \(f'(x)\) to find critical points:
    \(f'(x)=1-\frac{1}{2\sqrt{1-x}}\).
  2. Set the derivative to zero to find critical points:
    \(1-\frac{1}{2\sqrt{1-x}}=0\) leads to \(\frac{1}{2\sqrt{1-x}}=1\).
    Solving gives \(\sqrt{1-x}=\frac{1}{2}\).
    Squaring both sides, \(1-x=\frac{1}{4}\).
    Solve for \(x\) to get \(x=\frac{3}{4}\).
  3. Evaluate \(f(x)\) at critical points and endpoints of the interval:
    \(f(0)=0+\sqrt{1}=1\), \(f(1)=1+\sqrt{0}=1\), \(f\left(\frac{3}{4}\right)=\frac{3}{4}+\sqrt{\frac{1}{4}}=\frac{3}{4}+\frac{1}{2}=\frac{5}{4}\).
  4. Compare the values: \(f(0)=1\), \(f(1)=1\), \(f\left(\frac{3}{4}\right)=\frac{5}{4}\).
    The maximum value of \(f(x)\) on \([0,1]\) is \(\frac{5}{4}\).
Was this answer helpful?
0
0