Magnetisation \( M \) is defined as:
\[
M = \frac{\text{Magnetic moment}}{\text{Volume}}
\]
We are given:
- Magnetic moment \( \mu = 8 \times 10^{-7} \, \text{A}\cdot\text{m}^2 \)
- Mass \( m = 2 \, \text{g} = 2 \times 10^{-3} \, \text{kg} \)
- Density \( \rho = 4 \, \text{g/cm}^3 = 4 \times 10^3 \, \text{kg/m}^3 \)
Step 1: Calculate volume of the sample
Using \( \text{Density} = \frac{\text{Mass}}{\text{Volume}} \Rightarrow \text{Volume} = \frac{\text{Mass}}{\text{Density}} \)
\[
V = \frac{2 \times 10^{-3}}{4 \times 10^3} = \frac{2}{4} \times 10^{-6} = 0.5 \times 10^{-6} = 5 \times 10^{-7} \, \text{m}^3
\]
Step 2: Apply the formula for magnetisation
\[
M = \frac{8 \times 10^{-7}}{5 \times 10^{-7}} = \frac{8}{5} = 1.6 \, \text{A/m}
\]
Final Answer:
\[
\boxed{1.6 \, \text{A/m}}
\]