Question:

The Laurent series expansion of \(f(z)=[\frac{2}{(z-1)(z-2)}]\) valid for \(|z-1|>1\)

Updated On: Mar 21, 2024
  • \(\frac{1}{(z-1)}+\frac{2}{(z-1)^3}+\frac{3}{(z-1)^5}+.....\)
  • \(\frac{1}{(z-1)}+\frac{2}{(z-1)^3}+\frac{3}{(z-1)^3}+.....\)
  • \(\frac{1}{(z-2)}+\frac{2}{(z-2)^3}+\frac{3}{(z-2)^3}+.....\)
  • \(\frac{1}{(z-1)}+\frac{2}{(z-2)^3}+\frac{3}{(z-1)^3}+\frac{4}{(z-2)^4}+.....\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

The correct option is (B): \(\frac{1}{(z-1)}+\frac{2}{(z-1)^3}+\frac{3}{(z-1)^3}+.....\)
Was this answer helpful?
0
0