Given:
Density of Cu: \( \rho = 8.91\ \text{g/cm}^3 \)
Atomic mass: \( M = 63.55\ \text{g/mol} \)
Avogadro number: \( N_A = 6.023 \times 10^{23}\ \text{mol}^{-1} \)
FCC structure → 4 atoms per unit cell
Step 1: Mass of one atom \[ m_{\text{atom}} = \frac{M}{N_A} = \frac{63.55}{6.023\times10^{23}} = 1.055\times10^{-22}\ \text{g} \] Step 2: Mass of atoms in one FCC unit cell \[ m_{\text{cell}} = 4 \times m_{\text{atom}} = 4.22\times10^{-22}\ \text{g} \] Step 3: Volume of one unit cell \[ V_{\text{cell}} = \frac{m_{\text{cell}}}{\rho} = \frac{4.22\times10^{-22}}{8.91} = 4.73\times10^{-23}\ \text{cm}^3 \] Step 4: Lattice constant \[ a^3 = V_{\text{cell}} \] \[ a = (4.73\times10^{-23})^{1/3} \approx 3.615\times10^{-8}\ \text{cm} \] Convert to Å:
\(1\ \text{cm} = 10^{8}\ \text{Å}\) \[ a = 3.615\ \text{Å} \] Final Answer:
\[ \boxed{3.61\ \text{Å}} \]
In order to achieve the static equilibrium of the see-saw about the fulcrum \( P \), shown in the figure, the weight of Box B should be _________ kg, if the weight of Box A is 50 kg.

A particle of mass 1kg, initially at rest, starts sliding down from the top of a frictionless inclined plane of angle \(\frac{𝜋}{6}\)\(\frac{\pi}{6}\) (as schematically shown in the figure). The magnitude of the torque on the particle about the point O after a time 2seconds is ______N-m. (Rounded off to nearest integer) 
(Take g = 10m/s2)

