Step 1: For \(x_{1}(t) = e^{-t}u(t)\), \[ X_{1}(s) = \int_{0}^{\infty} e^{-t} e^{-st}\, dt = \int_{0}^{\infty} e^{-(s+1)t}\, dt. \] Convergence requires: \[ \mathrm{Re}(s) + 1 > 0 \;\;\Rightarrow\;\; \mathrm{Re}(s) > -1. \] Hence the ROC is the half-plane to the right of the vertical line \(\mathrm{Re}(s) = -1\).
Step 2: For \(x_{2}(t) = e^{t}u(-t)\), \[ X_{2}(s) = \int_{-\infty}^{0} e^{t} e^{-st}\, dt = \int_{-\infty}^{0} e^{(1-s)t}\, dt. \] Convergence requires: \[ \mathrm{Re}(1-s) > 0 \;\;\Rightarrow\;\; \mathrm{Re}(s) < 1. \] Thus the ROC is the half-plane to the left of the vertical line \(\mathrm{Re}(s) = 1\).
Step 3: The imaginary axis (\(\mathrm{Re}(s)=0\)) satisfies both: \[ \mathrm{Re}(s) > -1 \quad \text{and} \quad \mathrm{Re}(s) < 1. \] Hence, it lies within both ROCs.
Therefore, the only correct statement is: \[ \boxed{\text{(D)}} \]
Signals and their Fourier Transforms are given in the table below. Match LIST-I with LIST-II and choose the correct answer.
LIST-I | LIST-II |
---|---|
A. \( e^{-at}u(t), a>0 \) | I. \( \pi[\delta(\omega - \omega_0) + \delta(\omega + \omega_0)] \) |
B. \( \cos \omega_0 t \) | II. \( \frac{1}{j\omega + a} \) |
C. \( \sin \omega_0 t \) | III. \( \frac{1}{(j\omega + a)^2} \) |
D. \( te^{-at}u(t), a>0 \) | IV. \( -j\pi[\delta(\omega - \omega_0) - \delta(\omega + \omega_0)] \) |
The 12 musical notes are given as \( C, C^\#, D, D^\#, E, F, F^\#, G, G^\#, A, A^\#, B \). Frequency of each note is \( \sqrt[12]{2} \) times the frequency of the previous note. If the frequency of the note C is 130.8 Hz, then the ratio of frequencies of notes F# and C is:
Here are two analogous groups, Group-I and Group-II, that list words in their decreasing order of intensity. Identify the missing word in Group-II.
Abuse \( \rightarrow \) Insult \( \rightarrow \) Ridicule
__________ \( \rightarrow \) Praise \( \rightarrow \) Appreciate