Step 1: Use stepβgating property
$\displaystyle \mathcal{L}\{f(t)\,u(t-a)\}=e^{-as}\int_{0}^{\infty} f(t+a)e^{-st}\,dt$.
Step 2: Substitute $f(t)=e^{-3t}$, $a=5$
$f(t+5)=e^{-3(t+5)}=e^{-15}e^{-3t}$. Hence
\[
X(s)=e^{-5s}\,e^{-15}\int_{0}^{\infty} e^{-(s+3)t}\,dt
= e^{-5(s+3)} . \frac{1}{s+3}, \text{Re}\{s\}>-3.
\]
Final Answer: $\displaystyle \frac{e^{-5(s+3)}}{s+3}$ with ROC $\text{Re}\{s\}>-3$ (Option C).