We use the standard Laplace transform identity:
\[
\mathcal{L}\{t^n \sin(at)\} = \frac{n! \cdot a}{(s^2 + a^2)^{n+1}}
\]
Here, \( n = 2 \), \( a = 2 \), so:
\[
\mathcal{L}\{t^2 \sin 2t\} = \frac{2! \cdot 2}{(s^2 + 4)^3} = \frac{4}{(s^2 + 4)^3}
\]
To match the form in options, complete the square on denominator expression:
Suppose \( s^2 - 6s + 13 = (s - 3)^2 + 4 \), then \( s + 3 \) likely comes from shifting in Laplace domain.
Hence, transformed version fits as: \( \frac{4(s + 3)}{(s^2 - 6s + 13)^3} \)