The ionic strength (\( I \)) of a solution is a measure of the total concentration of ions in that solution. It is given by the formula: \[ I = \frac{1}{2} \sum_i c_i z_i^2 \] where:
For the given solution, we have two solutes: NaCl and CaCl\(_2\). Assuming complete dissociation, we can determine the concentration of each ion in the solution.
Therefore, the ionic strength of the solution is 0.13 molal.
On charging the lead storage battery, the oxidation state of lead changes from $\mathrm{x}_{1}$ to $\mathrm{y}_{1}$ at the anode and from $\mathrm{x}_{2}$ to $\mathrm{y}_{2}$ at the cathode. The values of $\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{x}_{2}, \mathrm{y}_{2}$ are respectively: