Begin by rewriting the denominator \(9 - 4x^2\):
\[ 9 - 4x^2 = (3 - 2x)(3 + 2x). \]
The integral becomes:
\[ \int \frac{1}{9 - 4x^2} dx = \int \frac{1}{(3 - 2x)(3 + 2x)} dx. \]
Using partial fraction decomposition:
\[ \frac{1}{(3 - 2x)(3 + 2x)} = \frac{A}{3 - 2x} + \frac{B}{3 + 2x}. \]
Equating and solving for \(A\) and \(B\):
\[ A = \frac{1}{6}, \quad B = \frac{1}{6}. \]
The integral becomes:
\[ \int \frac{1}{9 - 4x^2} dx = \frac{1}{6} \int \frac{1}{3 - 2x} dx + \frac{1}{6} \int \frac{1}{3 + 2x} dx. \]
Solving each term:
\[ \int \frac{1}{3 - 2x} dx = -\frac{1}{2} \log_e |3 - 2x|, \quad \int \frac{1}{3 + 2x} dx = \frac{1}{2} \log_e |3 + 2x|. \]
Substituting back:
\[ \int \frac{1}{9 - 4x^2} dx = \frac{1}{6} \left(-\frac{1}{2} \log_e |3 - 2x| + \frac{1}{2} \log_e |3 + 2x| \right). \]
Simplify:
\[ \int \frac{1}{9 - 4x^2} dx = \frac{1}{12} \log_e \left|\frac{3 + 2x}{3 - 2x}\right| + C. \]
List-I (Name of account to be debited or credited, when shares are forfeited) | List-II (Amount to be debited or credited) |
---|---|
(A) Share Capital Account | (I) Debited with amount not received |
(B) Share Forfeited Account | (II) Credited with amount not received |
(C) Calls-in-arrears Account | (III) Credited with amount received towards share capital |
(D) Securities Premium Account | (IV) Debited with amount called up |