Begin by rewriting the denominator \(9 - 4x^2\):
\[ 9 - 4x^2 = (3 - 2x)(3 + 2x). \]
The integral becomes:
\[ \int \frac{1}{9 - 4x^2} dx = \int \frac{1}{(3 - 2x)(3 + 2x)} dx. \]
Using partial fraction decomposition:
\[ \frac{1}{(3 - 2x)(3 + 2x)} = \frac{A}{3 - 2x} + \frac{B}{3 + 2x}. \]
Equating and solving for \(A\) and \(B\):
\[ A = \frac{1}{6}, \quad B = \frac{1}{6}. \]
The integral becomes:
\[ \int \frac{1}{9 - 4x^2} dx = \frac{1}{6} \int \frac{1}{3 - 2x} dx + \frac{1}{6} \int \frac{1}{3 + 2x} dx. \]
Solving each term:
\[ \int \frac{1}{3 - 2x} dx = -\frac{1}{2} \log_e |3 - 2x|, \quad \int \frac{1}{3 + 2x} dx = \frac{1}{2} \log_e |3 + 2x|. \]
Substituting back:
\[ \int \frac{1}{9 - 4x^2} dx = \frac{1}{6} \left(-\frac{1}{2} \log_e |3 - 2x| + \frac{1}{2} \log_e |3 + 2x| \right). \]
Simplify:
\[ \int \frac{1}{9 - 4x^2} dx = \frac{1}{12} \log_e \left|\frac{3 + 2x}{3 - 2x}\right| + C. \]