Given,
\[
I = \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{x + \frac{\pi}{4}}{2 - \cos 2x} \, dx
\]
Step 1: Splitting the integral
\[
I = \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{x}{2 - \cos 2x} \, dx + \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\frac{\pi}{4}}{2 - \cos 2x} \, dx
\]
Define:
\[
I_1 = \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{x}{2 - \cos 2x} \, dx
\]
and
\[
I_2 = \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\frac{\pi}{4}}{2 - \cos 2x} \, dx.
\]
Step 2: Evaluating \( I_1 \)
Let \( f(x) = \frac{x}{2 - \cos 2x} \).
\[
f(-x) = \frac{-x}{2 - \cos 2(-x)} = -f(x).
\]
Since \( f(x) \) is an odd function,
\[
I_1 = \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} f(x) \, dx = 0.
\]
Step 3: Evaluating \( I_2 \)
\[
I_2 = 2 \times \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{dx}{2 - \cos 2x}.
\]
Using the identity,
\[
2 - \cos 2x = 1 + \tan^2 x,
\]
we substitute \( t = \tan x \), giving \( dt = \sec^2 x \, dx \):
\[
I_2 = \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\sec^2 x \, dx}{1 + \tan^2 x} = \int_{\frac{1}{\sqrt{3}}}^{\sqrt{3}} \frac{dt}{1 + t^2}.
\]
Since
\[
\int \frac{dt}{1 + t^2} = \tan^{-1} t,
\]
we evaluate:
\[
I_2 = \tan^{-1} (\sqrt{3}) - \tan^{-1} (0) = \frac{\pi}{3}.
\]
Step 4: Final Calculation
\[
I = \frac{\pi}{2\sqrt{3}} \left( \tan^{-1}(\sqrt{3}) - \tan^{-1}(0) \right) = \frac{\pi^2}{6\sqrt{3}}.
\]
Thus, the correct answer is \(\boxed{(d)}\).