Question:

The integral \( I = \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{x + \frac{\pi}{4}}{2 - \cos 2x} \, dx \) is equal to:

Show Hint

For definite integrals involving trigonometric functions, consider using symmetry properties and substitution techniques like \( t = \tan x \).
Updated On: Feb 15, 2025
  • \( \frac{8\pi \sqrt{3}}{5} \)
  • \( \frac{2\pi \sqrt{3}}{9} \)
  • \( \frac{4\pi^2 \sqrt{3}}{9} \)
  • \( \frac{\pi^2}{6\sqrt{3}} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Given, \[ I = \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{x + \frac{\pi}{4}}{2 - \cos 2x} \, dx \] Step 1: Splitting the integral \[ I = \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{x}{2 - \cos 2x} \, dx + \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\frac{\pi}{4}}{2 - \cos 2x} \, dx \] Define: \[ I_1 = \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{x}{2 - \cos 2x} \, dx \] and \[ I_2 = \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\frac{\pi}{4}}{2 - \cos 2x} \, dx. \]
Step 2: Evaluating \( I_1 \)
Let \( f(x) = \frac{x}{2 - \cos 2x} \). \[ f(-x) = \frac{-x}{2 - \cos 2(-x)} = -f(x). \] Since \( f(x) \) is an odd function, \[ I_1 = \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} f(x) \, dx = 0. \]
Step 3: Evaluating \( I_2 \)
\[ I_2 = 2 \times \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{dx}{2 - \cos 2x}. \] Using the identity, \[ 2 - \cos 2x = 1 + \tan^2 x, \] we substitute \( t = \tan x \), giving \( dt = \sec^2 x \, dx \): \[ I_2 = \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\sec^2 x \, dx}{1 + \tan^2 x} = \int_{\frac{1}{\sqrt{3}}}^{\sqrt{3}} \frac{dt}{1 + t^2}. \] Since \[ \int \frac{dt}{1 + t^2} = \tan^{-1} t, \] we evaluate: \[ I_2 = \tan^{-1} (\sqrt{3}) - \tan^{-1} (0) = \frac{\pi}{3}. \]
Step 4: Final Calculation
\[ I = \frac{\pi}{2\sqrt{3}} \left( \tan^{-1}(\sqrt{3}) - \tan^{-1}(0) \right) = \frac{\pi^2}{6\sqrt{3}}. \] Thus, the correct answer is \(\boxed{(d)}\).
Was this answer helpful?
0
0