Step 1: Understanding the Concept:
We need to convert the second-order boundary value problem (BVP) into an equivalent Fredholm integral equation. The kernel of this equation is the Green’s function for the operator
\(L = \tfrac{d^2}{dx^2}\) under the given boundary conditions.
Step 2: Key Formula or Approach:
The BVP is:
\[
y''(x) + \lambda y(x) = 0, \quad y(0)=0, \; y(1)=0.
\]
Treating \(-\lambda y(x)\) as a forcing term \(f(x)\), we first solve \(y''(x) = f(x)\). After integrating twice and applying boundary conditions, we express \(y(x)\) in terms of an integral with a kernel \(G(x,t)\). Substituting back \(f(t) = -\lambda y(t)\), we obtain the Fredholm equation with kernel \(k(x,t) = -G(x,t)\).
Step 3: Detailed Explanation:
1. Solve \(y'' = f(x)\):
\[
y(x) = \int_0^x (x-t)f(t)dt + C_1x + C_2.
\]
Using \(y(0)=0 \implies C_2=0\).
2. Apply \(y(1)=0\):
\[
0 = \int_0^1 (1-t)f(t)dt + C_1 \implies C_1 = -\int_0^1 (1-t)f(t)dt.
\]
3. Substitution gives:
\[
y(x) = \int_0^x (x-t)f(t)dt - x \int_0^1 (1-t)f(t)dt.
\]
4. Rearranging yields:
\[
y(x) = \int_0^1 G(x,t) f(t)\,dt,
\]
where
\[
G(x,t) =
\begin{cases}
t(x-1), & t < x, \\
x(t-1), & t > x.
\end{cases}
\]
5. Substituting \(f(t) = -\lambda y(t)\):
\[
y(x) = \lambda \int_0^1 k(x,t) y(t)\,dt,
\]
with
\[
k(x,t) =
\begin{cases}
t(1-x), & t < x, \\
x(1-t), & t > x.
\end{cases}
\]
Step 4: Final Answer:
The integral equation corresponding to the given BVP is:
\[
y(x) = \lambda \int_0^1 k(x,t) \, y(t)\, dt,
\]
where
\[
k(x,t) =
\begin{cases}
t(1-x), & t < x, \\
x(1-t), & t > x.
\end{cases}
\]
This matches the required form.