Given system: \[ \frac{dy(t)}{dt} + y(t) = 3x(t-3)u(t-3) \] Take Laplace transform of both sides assuming zero initial conditions: \[ sY(s) + Y(s) = 3X(s)e^{-3s} \] Factor \( Y(s) \) on the left-hand side: \[ Y(s)(s+1) = 3X(s)e^{-3s} \] Divide both sides by \( (s+1) \) to get the transfer function: \[ \frac{Y(s)}{X(s)} = \frac{3e^{-3s}}{s+1} \] Hence, the transfer function of the system is: \[ \boxed{\frac{3e^{-3s}}{s+1}} \]