To solve this problem, we need to use the concept of bulk modulus (K), which is defined by the formula:
\( K = -\frac{\Delta P}{\frac{\Delta V}{V}} \)
where:
We are given:
Calculate the change in volume (\(\Delta V\)):
\( \frac{\Delta V}{V} = \frac{0.004}{100} = 0.00004 \)
Now, substitute the values back into the bulk modulus formula:
\( K = -\frac{\Delta P}{0.00004} \)
Solve for \(\Delta P\):
\( \Delta P = K \times 0.00004 \)
Substitute \( K \) into the equation:
\( \Delta P = 2.1 \times 10^9 \times 0.00004 \)
\( \Delta P = 8.4 \times 10^4 \text{ N/m}^2 \)
Thus, the increase in pressure required is \( \boxed{8.4 \times 10^4 \text{ N/m}^2} \).
The bulk modulus \( B \) is given by the relation: \[ B = \frac{-\Delta P}{\frac{\Delta V}{V}} \] Rearranging the equation to find the pressure change \( \Delta P \): \[ \Delta P = -B \times \frac{\Delta V}{V} \] Given: - \( B = 2.1 \times 10^9 \) N/m\(^2\), - \( \Delta V/V = 0.004\% = 0.00004 \), - Volume \( V = 200 \) L. Substitute the values: \[ \Delta P = -2.1 \times 10^9 \times 0.00004 = 8.4 \times 10^4 \, \text{N/m}^2 \] Thus, the required increase in pressure is \( 8.4 \times 10^4 \) N/m\(^2\).