Step 1: For a first order reaction,
\[
t_{1/2} = \frac{0.693}{k}
\]
Hence,
\[
t_{1/2} \propto \frac{1}{k}
\]
Step 2: From the given data at \(300\,\text{K}\) and \(310\,\text{K}\):
\[
\frac{k_{310}}{k_{300}} = \frac{t_{300}}{t_{310}} = \frac{60}{40} = 1.5
\]
Step 3: Using Arrhenius equation:
\[
\ln\left(\frac{k_2}{k_1}\right) = \frac{E_a}{R}\left(\frac{1}{T_1} - \frac{1}{T_2}\right)
\]
\[
\ln(1.5) = \frac{E_a}{R}\left(\frac{1}{300} - \frac{1}{310}\right)
\]
\[
E_a \approx 31.3\,\text{kJ mol}^{-1}
\]
Step 4: Now calculate the rate constant ratio between \(350\,\text{K}\) and \(300\,\text{K}\):
\[
\ln\left(\frac{k_{350}}{k_{300}}\right)
= \frac{E_a}{R}\left(\frac{1}{300} - \frac{1}{350}\right)
\]
\[
\frac{k_{350}}{k_{300}} \approx e^{1.79} \approx 6
\]
Step 5: Since half-life is inversely proportional to rate constant:
\[
t_{350} = \frac{t_{300}}{6} = \frac{60}{6} = 10\,\text{hrs}
\]
\[
10\,\text{hrs} = 600\,\text{min}
\]