A small point of mass \(m\) is placed at a distance \(2R\) from the center \(O\) of a big uniform solid sphere of mass \(M\) and radius \(R\). The gravitational force on \(m\) due to \(M\) is \(F_1\). A spherical part of radius \(R/3\) is removed from the big sphere as shown in the figure, and the gravitational force on \(m\) due to the remaining part of \(M\) is found to be \(F_2\). The value of the ratio \( F_1 : F_2 \) is:
The freezing point depression constant (\( K_f \)) for water is \( 1.86 \, {°C·kg/mol} \). If 0.5 moles of a non-volatile solute is dissolved in 1 kg of water, calculate the freezing point depression.