xy=C
\(y=Cy^{2}\)
\(y=cx\)
\(y=Cx^{2}\)
The given differential equation is:
\(\frac{ydx-xdy}{y}=0\)
\(⇒\frac{ydx-xdy}{xy}=0\)
\(⇒\frac{1}{x}dx-\frac{1}{y}dy=0\)
Integrating both sides,we get:
\(log|x|-log|y|=logk\)
\(⇒log|\frac{x}{y}|=logk\)
\(⇒\frac{x}{y}=k\)
\(⇒y=\frac{1}{k}x\)
\(⇒y=Cx \:where \:C=\frac{1}{k}\)
Hence,the correct answer is C.
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \( f(x + y) = f(x) f(y) \) for all \( x, y \in \mathbb{R} \). If \( f'(0) = 4a \) and \( f \) satisfies \( f''(x) - 3a f'(x) - f(x) = 0 \), where \( a > 0 \), then the area of the region R = {(x, y) | 0 \(\leq\) y \(\leq\) f(ax), 0 \(\leq\) x \(\leq\) 2\ is :