Question:

The general solution of the differential equation \(\frac{dy}{dx}=e^{x+y}\) is

Updated On: Sep 5, 2023
  • \(e^x+e^{-y}=C\)

  • \(e^x+e^y=C\)

  • \(e^{-x}+e^y=C\)

  • \(e^{-x}+e^{-y}=C\)

Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

The correct answer is A:\(e^x+e^{-y}=C\)
\(\frac{dy}{dx}=e^{x+y}=e^x.e^y\)
\(⇒\frac{dy}{e^y}=e^xdx\)
\(⇒e^{-y} dy=e^x dx\)
Integrating both sides,we get:
\(∫e^{-y} dy=∫e^x dx\)
\(⇒-e^{-y}=e^x+k\)
\(⇒e^x+e^{-y}=-k\)
\(⇒e^x+e^{-y}=c\,\,\, (c=-k)\)
Hence,the correct answer is A.
Was this answer helpful?
0
0