Question:

The general solution of the differential equation dydx=ex+y\frac{dy}{dx}=e^{x+y} is

Updated On: Sep 5, 2023
  • ex+ey=Ce^x+e^{-y}=C

  • ex+ey=Ce^x+e^y=C

  • ex+ey=Ce^{-x}+e^y=C

  • ex+ey=Ce^{-x}+e^{-y}=C

Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

The correct answer is A:ex+ey=Ce^x+e^{-y}=C
dydx=ex+y=ex.ey\frac{dy}{dx}=e^{x+y}=e^x.e^y
dyey=exdx⇒\frac{dy}{e^y}=e^xdx
eydy=exdx⇒e^{-y} dy=e^x dx
Integrating both sides,we get:
eydy=exdx∫e^{-y} dy=∫e^x dx
ey=ex+k⇒-e^{-y}=e^x+k
ex+ey=k⇒e^x+e^{-y}=-k
ex+ey=c   (c=k)⇒e^x+e^{-y}=c\,\,\, (c=-k)
Hence,the correct answer is A.
Was this answer helpful?
0
0

Top Questions on Differential equations

View More Questions