The given function is \(t(C)=\frac {9C}{5}+32\)
Therefore,
(i) \(t(0)\) = \(\frac {9\times 0}{5}\)\(+32\) = \(0+32\)
(ii) \(t(28)\) = \(\frac {9\times 28}{5}+32\) = \(\frac {252+160}{5}\) = \(\frac {412}{5}\)
(iii) \(t(-10)\) = \(\frac {9\times (-10)}{5}+32\) = \(9\times (-2)+32\) = \(-18+32\) = 14
(iv) It is given that t(C) = 212
\(212 = \frac {9C}{5} +32\)
\(\frac {9C}{5}=212 - 32\)
\(\frac {9C}{5}=180\)
\(9C=180\times 5\)
\(C = \frac {180 \times 5}{9}\)
\(C = 100\)
Thus the value of t when t(C) = 212 is 100.
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: