Given:
Free mean speed, \( V_f = 100 \, {kmph} \)
Capacity, \( q_{{max}} = 4000 \, {veh/hr} \)
Possible speed, \( V_1, V_2 = ? \)
Speed-density relation is linear.
The equation for speed-density relation is:
\[
q_{{max}} = \frac{1}{4} k_j V_f
\]
Substituting known values:
\[
4000 = \frac{1}{4} \times 100 k_j
\]
This simplifies to:
\[
k_j = 160 \, {veh/km}
\]
Now, using the formula for traffic flow, \( q = v k \), we get:
\[
q = v_f \left( k - \frac{k^2}{k_j} \right)
\]
Substituting the values:
\[
2000 = 100 \left( k - \frac{k^2}{160} \right)
\]
On solving, we get:
\[
k_1 = 23.431 \, {veh/km}, \quad k_2 = 136.568 \, {veh/km}
\]
Now, the velocity of traffic flow at \( k_1 = 23.431 \, {veh/km} \) is:
\[
V_1(k_1 = 23.431) = 100 \left( 1 - \frac{23.431}{160} \right) = 85.355 \, {km/hr}
\]
The velocity of traffic flow at \( k_2 = 136.568 \, {veh/km} \) is:
\[
V_2(k_2 = 136.568) = 100 \left( 1 - \frac{136.568}{160} \right) = 14.645 \, {km/hr}
\]
Thus, the correct options are (a) and (c).