The signal \(x(t) = (1 + \cos \pi t) \cdot p_2(t)\), where \(p_2(t)\) is a rectangular pulse of width 2, non-zero from \(t = -1\) to \(t = 1\).
\(\mathcal{F}\{p_2(t)\} = 2 \frac{\sin(\omega \cdot 1)}{\omega \cdot 1} = 2\text{sinc}(\omega)\) (using \(\text{sinc}(x) = \frac{\sin(x)}{x}\)).
Let \(x(t) = p_2(t) + p_2(t) \cos(\pi t)\).
\(\mathcal{F}\{p_2(t)\} = 2\text{sinc}(\omega)\).
For the term \(p_2(t) \cos(\pi t)\), we use the modulation property: If \(g(t) \leftrightarrow G(\omega)\), then \(g(t) \cos(\omega_0 t) \leftrightarrow \frac{1}{2}[G(\omega-\omega_0) + G(\omega+\omega_0)]\).
Here \(g(t) = p_2(t)\), \(G(\omega) = 2\text{sinc}(\omega)\), and \(\omega_0 = \pi\).
So, \(\mathcal{F}\{p_2(t) \cos(\pi t)\} = \frac{1}{2}[2\text{sinc}(\omega - \pi) + 2\text{sinc}(\omega + \pi)] = \text{sinc}(\omega - \pi) + \text{sinc}(\omega + \pi)\).
Therefore, \(X(\omega) = 2\text{sinc}(\omega) + \text{sinc}(\omega - \pi) + \text{sinc}(\omega + \pi)\).
Option (a) is \( 2\text{sinc}(\omega) + \text{sinc}(\omega - \pi) - \text{sinc}(\pi + \omega) \).
Since \(\text{sinc}(x)\) is an even function (\(\frac{\sin(x)}{x} = \frac{\sin(-x)}{-x}\)), \(\text{sinc}(\pi + \omega) = \text{sinc}(-(\pi + \omega)) = \text{sinc}(\omega + \pi)\).