The power dissipation in the Zener diode is given by
\[
P_{\text{Zener}} = \frac{V_Z^2}{R_L}.
\]
It is given that the power dissipation is 5 W and \( V_Z = 10\, \text{V} \). Therefore,
\[
5 = \frac{10^2}{R_L} \Rightarrow R_L = 20 \, \Omega.
\]
Now, to calculate \( R \), use Kirchhoff’s voltage law:
\[
V_{\text{in}} = I R + V_Z,
\]
where \( V_{\text{in}} = 35\, \text{V} \) and \( V_Z = 10\, \text{V} \). The current \( I \) can be found using
\[
I = \frac{V_Z}{R_L} = \frac{10}{20} = 0.5 \, \text{A}.
\]
Substituting into the equation for \( R \):
\[
35 = 0.5 \cdot R + 10 \Rightarrow R = \frac{25}{0.5} = 50 \, \Omega.
\]
Final Answer: The value of \( R \) is \( 50 \, \Omega \).