Step 1: Read the given values.
From circuit diagram:
\[
L = 100\,\mu H = 100\times 10^{-6}H
\]
\[
C = 1\,\mu F = 1\times 10^{-6}F
\]
\[
R = 10\Omega
\]
Given:
\[
\omega = 70\,k\,rad/s = 70\times 10^3\,rad/s
\]
Step 2: Compute inductive reactance.
\[
X_L = \omega L = (70\times 10^3)(100\times 10^{-6})
\]
\[
X_L = 70\times 10^3 \times 10^{-4} = 7\Omega
\]
Step 3: Compute capacitive reactance.
\[
X_C = \frac{1}{\omega C} = \frac{1}{(70\times 10^3)(1\times 10^{-6})}
\]
\[
X_C = \frac{1}{70\times 10^{-3}} = \frac{1}{0.07} \approx 14.3\Omega
\]
Step 4: Compare \(X_L\) and \(X_C\).
Since:
\[
X_C>X_L
\]
Net reactance:
\[
X = X_L - X_C<0
\]
So circuit behaves capacitive.
Thus it behaves like a series R-C circuit.
Final Answer:
\[
\boxed{\text{series R-C circuit}}
\]