Step 1: Reynolds number formula.
Reynolds number \( Re \) is given by the formula:
\[
Re = \frac{\rho v D}{\mu}
\]
where:
- \( \rho \) is the density of the fluid (assumed to be water, \( \rho = 1000 \, \text{kg/m}^3 \)),
- \( v \) is the flow velocity,
- \( D \) is the diameter of the pipe,
- \( \mu \) is the dynamic viscosity.
Step 2: Convert units.
We need to convert the given values into consistent SI units:
- \( v = 3 \, \text{liters/min} = \frac{3}{60} \, \text{m/s} = 0.05 \, \text{m/s} \),
- \( D = 1.25 \, \text{cm} = 0.0125 \, \text{m} \),
- \( \mu = 10^{-3} \, \text{Poise} = 10^{-3} \, \text{kg/ms} \).
Step 3: Substituting the values.
Now, substitute these values into the Reynolds number formula:
\[
Re = \frac{1000 \times 0.05 \times 0.0125}{10^{-3}} = 5091
\]
Step 4: Conclusion.
The Reynolds number is approximately \( \boxed{5091} \). The correct answer is (3) 5091.