Constraint (from geometry): \( D_1 + D_2 - D_3 = 0 \).
Let residuals be \( v_i \) with adjusted \( \hat D_i = D_i + v_i \) and weights \( w = \mathrm{diag}(1,2,1) \).
The constraint in residuals:
\[
v_1 + v_2 - v_3 = -(D_1 + D_2 - D_3) = -\left( 40.150 + 40.180 - 80.390 \right) = +0.060.
\]
Minimize \( \Phi = v^\top W v \) subject to \( A v = b \), with \( A = [1\ 1\ -1] \) and \( b = 0.060 \).
Constrained least squares gives
\[
v = W^{-1} A^\top \left( A W^{-1} A^\top \right)^{-1} b.
\]
Since \( W^{-1} = \mathrm{diag}(1, \tfrac{1}{2}, 1) \),
\[
A W^{-1} A^\top = [1\ 1\ -1] \begin{bmatrix} 1 & 0 & 0 \\ 0 & \tfrac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}
= 2.5, \quad (\,.\,)^{-1} = 0.4.
\]
Thus,
\[
v = \begin{bmatrix} 1 \\ \tfrac{1}{2} \\ -1 \end{bmatrix} \left( 0.4 \times 0.060 \right)
= \begin{bmatrix} 0.024 \\ 0.012 \\ -0.024 \end{bmatrix} \ \text{m}.
\]
Therefore (rounded to 3 decimals):
\[
\hat D_1 = 40.150 + 0.024 = \mathbf{40.174\ m}, \quad
\hat D_2 = 40.180 + 0.012 = \mathbf{40.192\ m}, \quad
\hat D_3 = 80.390 - 0.024 = \mathbf{80.366\ m}.
\]