Question:

The figure shows three distance observations $D_1$, $D_2$ and $D_3$. The table lists values of these observations and the corresponding weights. Assuming uncorrelated observations, the most probable values by the least squares approach for these measurements are ............................. (Rounded off to 3 decimal places). \[ \begin{array}{|c|c|c|} \hline \text{Distance} & \text{Measurement (m)} & \text{Weight} \\ \hline D_1 & 40.150 & 1 \\ \hline D_2 & 40.180 & 2 \\ \hline D_3 & 80.390 & 1 \\ \hline \end{array} \]

Show Hint

For a single linear condition $A v=b$, the residuals are $v=W^{-1}A^\top( A W^{-1}A^\top)^{-1} b$. Here $b$ is just the closure error; distribute it according to the inverse weights.
Updated On: Aug 29, 2025
  • $\hat D_1=40.170\ \mathrm{m},\ \hat D_2=40.190\ \mathrm{m},\ \hat D_3=80.360\ \mathrm{m}$
  • $\hat D_1=40.174\ \mathrm{m},\ \hat D_2=40.192\ \mathrm{m},\ \hat D_3=80.366\ \mathrm{m}$
  • $\hat D_1=40.175\ \mathrm{m},\ \hat D_2=40.185\ \mathrm{m},\ \hat D_3=80.360\ \mathrm{m}$
  • $\hat D_1=40.172\ \mathrm{m},\ \hat D_2=40.195\ \mathrm{m},\ \hat D_3=80.367\ \mathrm{m}$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Constraint (from geometry): \( D_1 + D_2 - D_3 = 0 \). Let residuals be \( v_i \) with adjusted \( \hat D_i = D_i + v_i \) and weights \( w = \mathrm{diag}(1,2,1) \). The constraint in residuals: \[ v_1 + v_2 - v_3 = -(D_1 + D_2 - D_3) = -\left( 40.150 + 40.180 - 80.390 \right) = +0.060. \] Minimize \( \Phi = v^\top W v \) subject to \( A v = b \), with \( A = [1\ 1\ -1] \) and \( b = 0.060 \). Constrained least squares gives \[ v = W^{-1} A^\top \left( A W^{-1} A^\top \right)^{-1} b. \] Since \( W^{-1} = \mathrm{diag}(1, \tfrac{1}{2}, 1) \), \[ A W^{-1} A^\top = [1\ 1\ -1] \begin{bmatrix} 1 & 0 & 0 \\ 0 & \tfrac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} = 2.5, \quad (\,.\,)^{-1} = 0.4. \] Thus, \[ v = \begin{bmatrix} 1 \\ \tfrac{1}{2} \\ -1 \end{bmatrix} \left( 0.4 \times 0.060 \right) = \begin{bmatrix} 0.024 \\ 0.012 \\ -0.024 \end{bmatrix} \ \text{m}. \] Therefore (rounded to 3 decimals): \[ \hat D_1 = 40.150 + 0.024 = \mathbf{40.174\ m}, \quad \hat D_2 = 40.180 + 0.012 = \mathbf{40.192\ m}, \quad \hat D_3 = 80.390 - 0.024 = \mathbf{80.366\ m}. \]
Was this answer helpful?
0
0

Questions Asked in GATE GE exam

View More Questions