Step 1: Use Maxwell’s equation.
From Faraday’s law,
\[
\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}.
\]
Step 2: Compute curl of \( \vec{E} \).
\[
\vec{E} = K(y\hat{i} + 3z\hat{j} + 4y\hat{k}) \cos(\omega t).
\]
\[
\nabla \times \vec{E} = K\cos(\omega t)[(\partial_y 4y - \partial_z 3z)\hat{i} + (\partial_z y - \partial_x 4y)\hat{j} + (\partial_x 3z - \partial_y y)\hat{k}] = K\cos(\omega t)(\hat{i} + \hat{j} + \hat{k}).
\]
Step 3: Relate to \( \vec{B} \).
\[
-\frac{\partial \vec{B}}{\partial t} = K(\hat{i} + \hat{j} + \hat{k}) \cos(\omega t).
\]
Integrate w.r.t. time:
\[
\vec{B} = -\frac{K}{\omega}(\hat{i} + \hat{j} + \hat{k}) \sin(\omega t).
\]
Step 4: Final Answer.
Hence, \( \vec{B} = -\frac{K}{\omega} (\hat{i} + \hat{j} + \hat{k}) \sin(\omega t). \)