The trigonometric Fourier series is \(x(t) = a_0 + \sum_{n=1}^{\infty} (a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t))\).
The exponential Fourier series is \(x(t) = \sum_{n=-\infty}^{\infty} C_n e^{jn\omega_0 t}\).
Using Euler's formulas for \(\cos\) and \(\sin\):
\(\cos(n\omega_0 t) = \frac{e^{jn\omega_0 t} + e^{-jn\omega_0 t}}{2}\)
\(\sin(n\omega_0 t) = \frac{e^{jn\omega_0 t} - e^{-jn\omega_0 t}}{2j}\)
Substituting into the trigonometric series and rearranging terms: \(x(t) = a_0 + \sum_{n=1}^{\infty} \left[ \left(\frac{a_n}{2} + \frac{b_n}{2j}\right)e^{jn\omega_0 t} + \left(\frac{a_n}{2} - \frac{b_n}{2j}\right)e^{-jn\omega_0 t} \right]\)
Since \(1/j = -j\): \(x(t) = a_0 + \sum_{n=1}^{\infty} \left[ \frac{1}{2}(a_n - jb_n)e^{jn\omega_0 t} + \frac{1}{2}(a_n + jb_n)e^{-jn\omega_0 t} \right]\)
Comparing with the exponential series \(C_0 + \sum_{n=1}^{\infty} C_n e^{jn\omega_0 t} + \sum_{n=1}^{\infty} C_{-n} e^{-jn\omega_0 t}\):
\(C_0 = a_0\)
For \(n>0\): \(C_n = \frac{1}{2}(a_n - jb_n)\)
For \(n>0\): \(C_{-n} = \frac{1}{2}(a_n + jb_n)\)
\[ \boxed{\frac{1}{2}(a_n + jb_n)} \]
Signals and their Fourier Transforms are given in the table below. Match LIST-I with LIST-II and choose the correct answer.
| LIST-I | LIST-II |
|---|---|
| A. \( e^{-at}u(t), a>0 \) | I. \( \pi[\delta(\omega - \omega_0) + \delta(\omega + \omega_0)] \) |
| B. \( \cos \omega_0 t \) | II. \( \frac{1}{j\omega + a} \) |
| C. \( \sin \omega_0 t \) | III. \( \frac{1}{(j\omega + a)^2} \) |
| D. \( te^{-at}u(t), a>0 \) | IV. \( -j\pi[\delta(\omega - \omega_0) - \delta(\omega + \omega_0)] \) |