The trigonometric Fourier series is \(x(t) = a_0 + \sum_{n=1}^{\infty} (a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t))\).
The exponential Fourier series is \(x(t) = \sum_{n=-\infty}^{\infty} C_n e^{jn\omega_0 t}\).
Using Euler's formulas for \(\cos\) and \(\sin\):
\(\cos(n\omega_0 t) = \frac{e^{jn\omega_0 t} + e^{-jn\omega_0 t}}{2}\)
\(\sin(n\omega_0 t) = \frac{e^{jn\omega_0 t} - e^{-jn\omega_0 t}}{2j}\)
Substituting into the trigonometric series and rearranging terms: \(x(t) = a_0 + \sum_{n=1}^{\infty} \left[ \left(\frac{a_n}{2} + \frac{b_n}{2j}\right)e^{jn\omega_0 t} + \left(\frac{a_n}{2} - \frac{b_n}{2j}\right)e^{-jn\omega_0 t} \right]\)
Since \(1/j = -j\): \(x(t) = a_0 + \sum_{n=1}^{\infty} \left[ \frac{1}{2}(a_n - jb_n)e^{jn\omega_0 t} + \frac{1}{2}(a_n + jb_n)e^{-jn\omega_0 t} \right]\)
Comparing with the exponential series \(C_0 + \sum_{n=1}^{\infty} C_n e^{jn\omega_0 t} + \sum_{n=1}^{\infty} C_{-n} e^{-jn\omega_0 t}\):
\(C_0 = a_0\)
For \(n>0\): \(C_n = \frac{1}{2}(a_n - jb_n)\)
For \(n>0\): \(C_{-n} = \frac{1}{2}(a_n + jb_n)\)
\[ \boxed{\frac{1}{2}(a_n + jb_n)} \]