
\(\frac{3C}{2}\)
3C
2C
\(\frac{C}{2}\)
The correct answer is option (C): 2C
A transparent block A having refractive index $ \mu_2 = 1.25 $ is surrounded by another medium of refractive index $ \mu_1 = 1.0 $ as shown in figure. A light ray is incident on the flat face of the block with incident angle $ \theta $ as shown in figure. What is the maximum value of $ \theta $ for which light suffers total internal reflection at the top surface of the block ?

Given below are two statements. One is labelled as Assertion (A) and the other is labelled as Reason (R):
Assertion (A): An electron in a certain region of uniform magnetic field is moving with constant velocity in a straight line path.
Reason (R): The magnetic field in that region is along the direction of velocity of the electron.
In the light of the above statements, choose the correct answer from the options given below:
The output (Y) of the given logic implementation is similar to the output of an/a …………. gate.
The total capacitance of this equivalent single capacitor depends both on the individual capacitors and how they are connected. There are two simple and common types of connections, called series and parallel, for which we can easily calculate the total capacitance.
Read Also: Combination of Capacitors
When one terminal of a capacitor is connected to the terminal of another capacitors , called series combination of capacitors.
Capacitors can be connected in two types which are in series and in parallel. If capacitors are connected one after the other in the form of a chain then it is in series. In series, the capacitance is less.
When the capacitors are connected between two common points they are called to be connected in parallel.
When the plates are connected in parallel the size of the plates gets doubled, because of that the capacitance is doubled. So in a parallel combination of capacitors, we get more capacitance.
Read More: Types of Capacitors