Step 1: Rewrite given equation.
Given:
\[
r^2 - 2\vec{r}\cdot\vec{c} + h = 0
\] Step 2: Use identity for completing square.
\[
r^2 - 2\vec{r}\cdot\vec{c} = |\vec{r}-\vec{c}|^2 - |\vec{c}|^2
\]
So equation becomes:
\[
|\vec{r}-\vec{c}|^2 - |\vec{c}|^2 + h = 0
\]
\[
|\vec{r}-\vec{c}|^2 = |\vec{c}|^2 - h
\] Step 3: Interpret.
This is equation of a sphere with centre \(\vec{c}\) and radius:
\[
R=\sqrt{|\vec{c}|^2-h}
\] Step 4: Condition given.
\(|\vec{c}|>\sqrt{h}\) ensures \( |\vec{c}|^2-h>0\), so radius is real. Final Answer:
\[
\boxed{\text{Sphere}}
\]