The given SHM equation is $x = 3 \sin(6t + \frac{\pi}{6})$, so amplitude $A = 3$ m, and angular frequency $\omega = 6$ rad/s. At $t=0$, $x = 3 \sin(\frac{\pi}{6}) = 3 \times \frac{1}{2} = \frac{3}{2}$ m.
Potential energy: $PE = \frac{1}{2}m\omega^2x^2$. Kinetic energy: $KE = \frac{1}{2}m\omega^2(A^2 - x^2)$. So, $\frac{PE}{KE} = \frac{x^2}{A^2 - x^2}$.
Substituting: $\frac{(\frac{3}{2})^2}{3^2 - (\frac{3}{2})^2} = \frac{9/4}{9 - 9/4} = \frac{9}{27} = \frac{1}{3}$.
Hence, the ratio of PE to KE at $t=0$ is $1:3$.