The enthalpy of vaporization of a liquid is \(30\,\text{kJ mol}^{-1}\) and entropy of vaporization is \(75\,\text{J K}^{-1}\text{ mol}^{-1}\). The boiling point of the liquid at \(1\,\text{atm}\) is
Show Hint
At boiling point:
\[
\Delta G = 0 \Rightarrow T_b = \frac{\Delta H_{\text{vap}}}{\Delta S_{\text{vap}}}
\]
Always convert all quantities into consistent units before substitution.
Step 1: At boiling point, the phase equilibrium condition is:
\[
\Delta G = 0
\]
Step 2: Using the relation:
\[
\Delta G = \Delta H - T\Delta S
\]
At equilibrium,
\[
\Delta H = T\Delta S
\]
Step 3: Convert enthalpy to joules:
\[
\Delta H = 30\,\text{kJ mol}^{-1} = 30000\,\text{J mol}^{-1}
\]
Step 4: Substitute the given values:
\[
T = \frac{\Delta H}{\Delta S} = \frac{30000}{75} = 400\,\text{K}
\]
Step 5: Hence, the boiling point of the liquid is:
\[
\boxed{400\,\text{K}}
\]