Step 1: Given Data
\[
R = 5 \times 10^3 \text{ ohm}, \quad c = 0.1 \text{ mol L}^{-1}
\]
Step 2: Finding Conductivity (\( \kappa \))
Conductivity is given by:
\[
\kappa = \frac{1}{R} \times \frac{l}{A}
\]
where:
\[
A = \pi r^2 = \pi (0.5)^2 = 0.785 \text{ cm}^2, \quad l = 1000 \text{ cm}
\]
\[
\kappa = \frac{1}{5 \times 10^3} \times \frac{1000}{0.785} = 0.000255 \text{ S cm}^{-1}
\]
Step 3: Finding Molar Conductivity (\( \Lambda_m \))
\[
\Lambda_m = \frac{\kappa \times 1000}{c} = \frac{0.000255 \times 1000}{0.1} = 2.55 \text{ S cm}^2 \text{ mol}^{-1}
\]