Step 1: Determine the magnetic field.
For an electromagnetic wave propagating along \( z \)-axis,
\[
\vec{B} = \frac{E_0}{c} \cos(\omega t - kz) \hat{j}.
\]
Step 2: Calculate the Lorentz force.
\[
\vec{F} = q(\vec{E} + \vec{v} \times \vec{B}).
\]
At \( z = 0 \):
\[
\vec{E} = E_0 \cos(\omega t) \hat{i}, \quad \vec{B} = \frac{E_0}{c} \cos(\omega t) \hat{j}.
\]
Since \( \vec{v} = 0.5c \hat{k} \):
\[
\vec{v} \times \vec{B} = 0.5c \hat{k} \times \frac{E_0}{c}\hat{j} = -0.5E_0 \hat{i}.
\]
Step 3: Total force.
\[
\vec{F} = qE_0 \cos(\omega t)\hat{i} + q(-0.5E_0 \cos(\omega t)\hat{i}) = \frac{qE_0}{2}\cos(\omega t)\hat{i}.
\]
Step 4: Final Answer.
The instantaneous force is \( \frac{qE_0}{2}\hat{i}. \)