We are given:
- Point \( P = (-3, 2, 3) \)
- A line passing through point \( A = (4, 6, -2) \) with direction ratios \( \vec{d} = \langle -1, 2, 3 \rangle \)
We are to find the perpendicular distance from point \( P \) to the line.
Step 1: Use vector formula for distance from point to line
The formula is:
\[
\text{Distance} = \frac{\| \vec{AP} \times \vec{d} \|}{\| \vec{d} \|}
\]
Where:
- \( \vec{AP} = \vec{P} - \vec{A} = (-3 - 4, 2 - 6, 3 - (-2)) = \langle -7, -4, 5 \rangle \)
- \( \vec{d} = \langle -1, 2, 3 \rangle \)
Step 2: Compute cross product \( \vec{AP} \times \vec{d} \)
\[
\vec{AP} \times \vec{d} =
\begin{vmatrix}
\hat{i} & \hat{j} & \hat{k}
-7 & -4 & 5
-1 & 2 & 3
\end{vmatrix}
= \hat{i}((-4)(3) - (5)(2)) - \hat{j}((-7)(3) - (5)(-1)) + \hat{k}((-7)(2) - (-4)(-1))
\]
\[
= \hat{i}(-12 - 10) - \hat{j}(-21 + 5) + \hat{k}(-14 - 4)
= \langle -22, 16, -18 \rangle
\]
Step 3: Compute magnitudes
- Magnitude of cross product:
\[
\| \vec{AP} \times \vec{d} \| = \sqrt{(-22)^2 + 16^2 + (-18)^2} = \sqrt{484 + 256 + 324} = \sqrt{1064}
\]
- Magnitude of direction vector \( \vec{d} \):
\[
\| \vec{d} \| = \sqrt{(-1)^2 + 2^2 + 3^2} = \sqrt{1 + 4 + 9} = \sqrt{14}
\]
Step 4: Final distance
\[
\text{Distance} = \frac{\sqrt{1064}}{\sqrt{14}} = \sqrt{\frac{1064}{14}} = \sqrt{76} = \boxed{2\sqrt{19}}
\]
Wait — we must have made a calculation error. Let’s check:
\[
\vec{AP} \times \vec{d} = \langle -22, 16, -18 \rangle
\Rightarrow \text{Magnitude } = \sqrt{(-22)^2 + 16^2 + (-18)^2}
= \sqrt{484 + 256 + 324} = \sqrt{1064}
\]
\[
\text{So } \frac{\sqrt{1064}}{\sqrt{14}} = \sqrt{\frac{1064}{14}} = \sqrt{76}
\Rightarrow 76 = 4^2 \cdot 19 \Rightarrow \sqrt{76} = 2\sqrt{19}
\]
Oops! Earlier we missed a factor of 2:
\[
\text{Correct final distance: } \boxed{4\sqrt{19}}
\]