Step 1: Understanding the given equation
The displacement equation for simple harmonic motion is given as:
\[
x = A \cos (\omega t + \phi)
\]
Comparing with the given equation,
\[
A = 8 \text{ m}, \quad \omega = 50 \text{ rad/s}
\]
Step 2: Formula for Maximum Kinetic Energy
The maximum kinetic energy in simple harmonic motion is given by:
\[
KE_{\max} = \frac{1}{2} m \omega^2 A^2
\]
Here, the given mass is \(2g = 2 \times 10^{-3} \text{ kg}\).
Step 3: Substituting values
\[
KE_{\max} = \frac{1}{2} \times (2 \times 10^{-3}) \times (50)^2 \times (8)^2
\]
\[
= \frac{1}{2} \times 2 \times 10^{-3} \times 2500 \times 64
\]
\[
= 160 \text{ J}
\]
Thus, the correct answer is option (A) 160 J.