Step 1: Identify SHM parameters.
Given:
\[
y = 5\sin\left(4t+\frac{\pi}{3}\right)
\]
So amplitude:
\[
A = 5
\]
Angular frequency:
\[
\omega = 4
\]
Step 2: Find time period.
\[
T = \frac{2\pi}{\omega} = \frac{2\pi}{4} = \frac{\pi}{2}
\]
So:
\[
t = \frac{T}{4} = \frac{\pi}{8}
\]
Step 3: Find velocity at this time.
Velocity in SHM:
\[
v = \frac{dy}{dt} = A\omega \cos(\omega t + \phi)
\]
So:
\[
v = 5 \cdot 4 \cos\left(4\cdot \frac{\pi}{8} + \frac{\pi}{3}\right)
\]
\[
v = 20 \cos\left(\frac{\pi}{2} + \frac{\pi}{3}\right)
\]
\[
v = 20 \cos\left(\frac{5\pi}{6}\right)
\]
\[
\cos\left(\frac{5\pi}{6}\right) = -\frac{\sqrt{3}}{2}
\Rightarrow v = 20\left(-\frac{\sqrt{3}}{2}\right) = -10\sqrt{3}
\]
Step 4: Compute kinetic energy.
Mass \(m = 2g = 2 \times 10^{-3}kg\) (taking \(g = 10\,m\,s^{-2}\) as gram conversion implies \(2g = 0.002kg\)).
Kinetic energy:
\[
KE = \frac{1}{2}mv^2
\]
\[
KE = \frac{1}{2}(0.002)(100 \cdot 3)
\]
\[
KE = 0.001 \times 300 = 0.3J
\]
Final Answer:
\[
\boxed{0.3\,J}
\]