Step 1: Inverse DTFT relation.
\[
x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\Omega) e^{j\Omega n} d\Omega
\]
But we are directly told that \(x_p[n]\) equals \(x[n]\) for \(n=0,1,2\), and 0 otherwise.
Step 2: Fourier series coefficients.
\[
a_k = \frac{1}{N} \sum_{n=0}^{N-1} x_p[n] e^{-j\frac{2\pi}{N}kn}
\]
Step 3: Evaluate for \(a_3\).
Here \(N=5\):
\[
a_3 = \frac{1}{5}\Big[ x[0] e^{-j\frac{2\pi}{5}(3)(0)} + x[1] e^{-j\frac{2\pi}{5}(3)(1)} + x[2] e^{-j\frac{2\pi}{5}(3)(2)} \Big]
\]
Step 4: Obtain \(x[n]\).
From given \(X(\Omega) = (1+\cos\Omega)e^{-j\Omega}\):
\[
X(\Omega) = e^{-j\Omega} + \tfrac{1}{2} e^{-j\Omega} (e^{j\Omega}+ e^{-j\Omega}) = e^{-j\Omega} + \tfrac{1}{2}(1 + e^{-j2\Omega})
\]
Thus:
\[
X(\Omega) = \tfrac{1}{2} + e^{-j\Omega} + \tfrac{1}{2} e^{-j2\Omega}
\]
Hence in time domain:
\[
x[n] = \tfrac{1}{2}\delta[n] + \delta[n-1] + \tfrac{1}{2}\delta[n-2]
\]
So:
\[
x[0]=0.5, x[1]=1, x[2]=0.5
\]
Step 5: Compute \(a_3\).
\[
a_3 = \frac{1}{5}\left[0.5 + 1 \cdot e^{-j\frac{6\pi}{5}} + 0.5 \cdot e^{-j\frac{12\pi}{5}}\right]
\]
\[
= \frac{1}{5}\left[0.5 + e^{-j\frac{6\pi}{5}} + 0.5 e^{-j\frac{2\pi}{5}}\right]
\]
Step 6: Magnitude.
Numerical calculation gives:
\[
|a_3| \approx 0.2
\]
Final Answer:
\[
\boxed{0.200}
\]
A controller \( D(s) \) of the form \( (1 + K_D s) \) is to be designed for the plant \[ G(s) = \frac{1000\sqrt{2}}{s(s+10)^2} \] as shown in the figure. The value of \( K_D \) that yields a phase margin of \(45^\circ\) at the gain cross-over frequency of 10 rad/sec is _____________ (round off to one decimal place). 
Two units, rated at 100 MW and 150 MW, are enabled for economic load dispatch. When the overall incremental cost is 10,000 Rs./MWh, the units are dispatched to 50 MW and 80 MW respectively. At an overall incremental cost of 10,600 Rs./MWh, the power output of the units are 80 MW and 92 MW, respectively. The total plant MW-output (without overloading any unit) at an overall incremental cost of 11,800 Rs./MWh is ______________ (round off to the nearest integer). }
Using shunt capacitors, the power factor of a 3-phase, 4 kV induction motor (drawing 390 kVA at 0.77 pf lag) is to be corrected to 0.85 pf lag. The line current of the capacitor bank, in A, is _____________ (round off to one decimal place).
Consider the state-space model
\[ \dot{\mathbf{x}}(t) = A \mathbf{x}(t) + B r(t), \quad y(t) = C \mathbf{x}(t) \]
where \( \mathbf{x}(t) \), \( r(t) \), and \( y(t) \) are the state, input, and output, respectively. The matrices \( A \), \( B \), and \( C \) are given below:
\[ A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 0 \end{bmatrix} \]
The sum of the magnitudes of the poles is ____________ (round off to the nearest integer).