Step 1: Inverse DTFT relation.
\[
x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\Omega) e^{j\Omega n} d\Omega
\]
But we are directly told that \(x_p[n]\) equals \(x[n]\) for \(n=0,1,2\), and 0 otherwise.
Step 2: Fourier series coefficients.
\[
a_k = \frac{1}{N} \sum_{n=0}^{N-1} x_p[n] e^{-j\frac{2\pi}{N}kn}
\]
Step 3: Evaluate for \(a_3\).
Here \(N=5\):
\[
a_3 = \frac{1}{5}\Big[ x[0] e^{-j\frac{2\pi}{5}(3)(0)} + x[1] e^{-j\frac{2\pi}{5}(3)(1)} + x[2] e^{-j\frac{2\pi}{5}(3)(2)} \Big]
\]
Step 4: Obtain \(x[n]\).
From given \(X(\Omega) = (1+\cos\Omega)e^{-j\Omega}\):
\[
X(\Omega) = e^{-j\Omega} + \tfrac{1}{2} e^{-j\Omega} (e^{j\Omega}+ e^{-j\Omega}) = e^{-j\Omega} + \tfrac{1}{2}(1 + e^{-j2\Omega})
\]
Thus:
\[
X(\Omega) = \tfrac{1}{2} + e^{-j\Omega} + \tfrac{1}{2} e^{-j2\Omega}
\]
Hence in time domain:
\[
x[n] = \tfrac{1}{2}\delta[n] + \delta[n-1] + \tfrac{1}{2}\delta[n-2]
\]
So:
\[
x[0]=0.5, x[1]=1, x[2]=0.5
\]
Step 5: Compute \(a_3\).
\[
a_3 = \frac{1}{5}\left[0.5 + 1 \cdot e^{-j\frac{6\pi}{5}} + 0.5 \cdot e^{-j\frac{12\pi}{5}}\right]
\]
\[
= \frac{1}{5}\left[0.5 + e^{-j\frac{6\pi}{5}} + 0.5 e^{-j\frac{2\pi}{5}}\right]
\]
Step 6: Magnitude.
Numerical calculation gives:
\[
|a_3| \approx 0.2
\]
Final Answer:
\[
\boxed{0.200}
\]
In the Wheatstone bridge shown below, the sensitivity of the bridge in terms of change in balancing voltage \( E \) for unit change in the resistance \( R \), in V/Ω, is __________ (round off to two decimal places).
The relationship between two variables \( x \) and \( y \) is given by \( x + py + q = 0 \) and is shown in the figure. Find the values of \( p \) and \( q \). Note: The figure shown is representative.