The difference between molar specific heats at constant pressure (\( C_p \)) and constant volume (\( C_v \)) is:
\[
C_p - C_v = R.
\]
Given: \( C_p - C_v = 9000 \, \text{J/kg K} \), and \( \frac{C_p}{C_v} = 1.5 \).
Note: The unit J/kg K suggests specific heats per unit mass, but “molar” implies per mole. Assuming a typo and interpreting as J/mol K (common in such problems).
\[
C_p - C_v = 9000 \, \text{J/mol K}, \quad \frac{C_p}{C_v} = 1.5.
\]
Let \( C_v = x \). Then \( C_p = 1.5x \).
\[
1.5x - x = 9000 \quad \Rightarrow \quad 0.5x = 9000 \quad \Rightarrow \quad x = 18000.
\]
\[
C_v = 18000 \, \text{J/mol K}, \quad C_p = 1.5 \times 18000 = 27000 \, \text{J/mol K}.
\]
Answer: \( C_p = 27000 \, \text{J/mol K} \), \( C_v = 18000 \, \text{J/mol K} \).