Let the present ages of Trisha and Shalini be \(T\) and \(S\) respectively. 
Given: 
\[
S - T = 14
\]
Seven years ago: 
\[
\frac{T - 7}{S - 7} = \frac{5}{7}
\]
Cross multiply: 
\[
7(T - 7) = 5(S - 7)
\]
\[
7T - 49 = 5S - 35
\]
\[
7T - 5S = 14
\]
Using \(S = T + 14\), substitute: 
\[
7T - 5(T + 14) = 14
\]
\[
7T - 5T - 70 = 14
\]
\[
2T = 84
\]
\[
T = 42
\]
So, \[
S = T + 14 = 42 + 14 = 56
\]
Check the ratio 7 years ago: 
\[
\frac{42 - 7}{56 - 7} = \frac{35}{49} = \frac{5}{7}
\]
Hence, Shalini’s present age is \(\boxed{56}\) years.