Let \( y = \tan^{-1} \left( \frac{3x - x^3}{1 - 3x^2} \right) \).
We need to differentiate this function using the chain rule.
The derivative of \( \tan^{-1}(u) \) is:
\[
\frac{d}{dx} \tan^{-1}(u) = \frac{1}{1 + u^2} \cdot \frac{du}{dx}
\]
In our case, \( u = \frac{3x - x^3}{1 - 3x^2} \).
The derivative of \( u \) is:
\[
\frac{du}{dx} = \frac{d}{dx} \left( \frac{3x - x^3}{1 - 3x^2} \right)
\]
By applying the quotient rule and simplifying, the result is:
\[
\frac{3}{1 + 9x^2}
\]
Conclusion.
Thus, the derivative is \( \frac{3}{1 + 9x^2} \), which corresponds to option (b).