Step 1: Consider 1 mole of \(N_2O_4\) initially.
Let the degree of dissociation be \(\alpha\).
\[
\begin{array}{c|c|c|c}
\text{Species} & N_2O_4 & NO_2
\hline
\text{Initial (mol)} & 1 & 0
\text{Change (mol)} & -\alpha & +2\alpha
\text{Equilibrium (mol)} & 1-\alpha & 2\alpha
\end{array}
\]
Step 2: Total moles at equilibrium:
\[
n_{\text{total}} = (1-\alpha) + 2\alpha = 1+\alpha
\]
Step 3: Partial pressures:
\[
P_{NO_2} = \frac{2\alpha}{1+\alpha}P, \quad
P_{N_2O_4} = \frac{1-\alpha}{1+\alpha}P
\]
Step 4: Expression for equilibrium constant:
\[
K_p = \frac{(P_{NO_2})^2}{P_{N_2O_4}}
\]
\[
K_p = \frac{\left(\dfrac{2\alpha P}{1+\alpha}\right)^2}{\dfrac{(1-\alpha)P}{1+\alpha}}
\]
\[
K_p = \frac{4\alpha^2 P}{1-\alpha^2}
\]
Step 5: Rearranging:
\[
\alpha^2 = \frac{\dfrac{K_p}{P}}{4 + \dfrac{K_p}{P}}
\]
\[
\alpha = \left[\frac{\dfrac{K_p}{P}}{4 + \dfrac{K_p}{P}}\right]^{1/2}
\]