Step 1: Phase difference for two waves.
For constructive interference,
\[
\Delta \phi = \phi_1 - \phi_2 = 2m\pi.
\]
Step 2: Write down the phases.
\[
\phi_1 = \frac{k}{\sqrt{2}}(\sqrt{3}x + y), \quad \phi_2 = \frac{k}{\sqrt{2}}(x + \sqrt{3}y).
\]
Then,
\[
\Delta \phi = \frac{k}{\sqrt{2}}[(\sqrt{3}x + y) - (x + \sqrt{3}y)] = \frac{k}{\sqrt{2}}[(\sqrt{3} - 1)x + (1 - \sqrt{3})y].
\]
Step 3: Simplify for maxima.
\[
\Delta \phi = 2m\pi \Rightarrow \frac{2\pi}{\lambda \sqrt{2}}[(\sqrt{3} - 1)x + (1 - \sqrt{3})y] = 2m\pi.
\]
\[
(\sqrt{3} - \sqrt{2})x + (1 - \sqrt{2})y = 2m\lambda.
\]
Step 4: Final Answer.
Hence, the condition for maxima is \( (\sqrt{3} - \sqrt{2})x + (1 - \sqrt{2})y = 2m\lambda. \)